

Intellijel – Plog

- [Manual PDF](#)

[Download the Plog rev 1.0 Manual PDF](#)

Intellijel Plog Cheat Sheet

Plog is a flexible, voltage-controlled logic processor module with two 3-input logic blocks (A & B), a toggle flip-flop (T), and a data flip-flop (D). Useful for creating complex patterns, clock/trigger manipulation, and experimental generative sequences.

Panel Controls & Features

Logic Blocks (A & B)

- **TYPE Button**
 - Press: Cycle logic type (AND, OR, NOR, XOR, NAND, XNOR) for selected block
 - Hold (1 sec): Load preset from memory
- **TYPE CV Attenuator (A & B)**
 - Mini knobs to scale incoming CV to TYPE A/B CV inputs
- **SELECT Button**
 - Press: Select which logic block (A or B) to edit
 - Hold (1 sec): Save current logic states to memory

- **OUT A / OUT B (Outputs)**
 - Main logic block outputs
- **TYPE A/B CV Input ([±5V], bipolar)**
 - Controls which logic type is selected for each block
 - LEDs indicate selected logic type
- Typical logic types per CV:
 - AND, OR, NOR, XOR, NAND, XNOR
- **X, Y, Z Inputs (Channel A & B, [0-5V logic], protected ± overvoltage)**
 - X and Y of A are normalled to X and Y of B
 - Z is normalled to Y unless patched
 - 0V = logic LOW; 5V = logic HIGH; comparator threshold ≈3V

Flip-Flop Section

- **TRIGGER Button**
 - Press: Sends trigger to Toggle input (T Flip-Flop)
 - Hold (1 sec): Enter tap-tempo mode, tap to set clock, hold again to exit
- **TOGGLE Input (T, [0-5V logic], protected)**
 - Trigger for Toggle flip-flop
 - TRIGGER button normalled to this jack
 - Jumper on back: can normal OUT B here
- **OUT T (Output, [0-5V pulses])**
 - Output of the Toggle flip-flop
 - In tap-tempo mode: tempo clock output (square pulses)
- **CLK (Clock Input, [0-5V logic])**

- Clock input for Data (D) flip-flop
- OUT T normalled to here
- **DATA (Input, [0-5V logic])**
- Data input for Data (D) flip-flop
- **OUT D (Output, [0-5V pulses])**
- Output of the Data flip-flop

Logic Types and Truth Tables

Logic Type	Description
AND	High only if all inputs are High
OR	High if any input is High
NOR	High if all inputs are Low
XOR	High if odd number of inputs are High
NAND	High unless all inputs are High
XNOR	High if even number of inputs are High

See manual Tables 1 & 2 for detailed truth tables for 3 or 2 input modes.

Usage Ideas

- **Clock Dividing:** Use the flip-flops as /2, /4 clock dividers
- **Randomized Triggers:** Patch random and quantized sources into logic blocks for "real-time quantizer" effects
- **Pattern Mutation:** Use CV over logic type inputs to morph gate patterns

- **CV Addressed Logic:** Modulate TYPE A/B CV for evolving logic operations

Voltage Ranges

- **Logic inputs:** 0-5V pulses/gates/clocks (comparator @ 3V threshold, accepts non-square inputs)
- **CV TYPE inputs:** $\pm 5V$ (bipolar, for logic type selection)
- **Outputs:** 0-5V (unipolar pulses/gates/clocks)

Technical Specs (from manual)

- 8HP, 29mm depth
- +12V 55mA / -12V 11mA

Example Patch (Quantized LFO)

- Set A to AND
- Random triggers (e.g. square LFO) \rightarrow X
- Clock (e.g. drum machine/sequencer) \rightarrow Y
- OUT A \rightarrow Envelope \rightarrow VCA
- Modulate TYPE A CV for extra variation

Generated With Eurorack Processor